An inference model gives insights into innate immune adaptation and repertoire diversity

Author:

Qin Yawei1ORCID,Mace Emily M.2ORCID,Barton John P.13ORCID

Affiliation:

1. Department of Physics and Astronomy, University of California, Riverside, CA 92521

2. Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032

3. Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260

Abstract

The innate immune system is the body’s first line of defense against infection. Natural killer (NK) cells, a vital part of the innate immune system, help to control infection and eliminate cancer. Studies have identified a vast array of receptors that NK cells use to discriminate between healthy and unhealthy cells. However, at present, it is difficult to explain how NK cells will respond to novel stimuli in different environments. In addition, the expression of different receptors on individual NK cells is highly stochastic, but the reason for these variegated expression patterns is unclear. Here, we studied the recognition of unhealthy target cells as an inference problem, where NK cells must distinguish between healthy targets with normal variability in ligand expression and ones that are clear “outliers.” Our mathematical model fits well with experimental data, including NK cells’ adaptation to changing environments and responses to different target cells. Furthermore, we find that stochastic, “sparse” receptor expression profiles are best able to detect a variety of possible threats, in agreement with experimental studies of the NK cell repertoire. While our study was specifically motivated by NK cells, our model is general and could also apply more broadly to explain principles of target recognition for other immune cell types.

Funder

HHS | National Institutes of Health

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3