Revealing the missing puzzle piece of concentration in regulating Zn electrodeposition

Author:

Zhao Zhongxi1,He Yi1,Yu Wentao1,Shang Wenxu1,Ma Yanyi1,Tan Peng1ORCID

Affiliation:

1. Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, China

Abstract

Despite achievements in suppressing dendrites and regulating Zn crystal growth, secondary aqueous Zn batteries are still rare in the market. Existing strategies mainly focus on electrode modification and electrolyte optimization, while the essential role of ion concentration in liquid-to-solid electrodeposition is neglected for a long time. Herein, the mechanism of concentration regulation in Zn electrodeposition is investigated in depth by combining electrochemical tests, post hoc characterization, and multiscale simulations. First, initial Zn electrodeposition is thermodynamically controlled epitaxial growth, whereas with the rapid depletion of ions, the concentration overpotential transcends the thermodynamic influence to kinetic control. Then, the evolution of the morphology from 2D sheets to 1D whiskers due to the concentration change is insightfully revealed by the morphological characterization and phase-field modeling. Furthermore, the depth of discharge (DOD) results in large concentration differences at the electrode–electrolyte interface, with a mild concentration distribution at lower DOD generating (002) crystal plane 2D sheets and a heavily varied concentration distribution at higher DOD yielding arbitrarily oriented 3D blocks. As a proof of concept, relaxation is introduced into two systems to homogenize the concentration distribution, revalidating the essential role of concentration in regulating electrodeposition, and two vital factors affecting the relaxation time, i.e., current density and electrode distance, are deeply investigated, demonstrating that the relaxation time is positively related to both and is more sensitive to the electrode distance. This work contributes to reacquainting aqueous batteries undergoing phase transitions and reveals a missing piece of the puzzle in regulating Zn electrodeposition.

Funder

Anhui Provincial Natural Science Foundation

National Innovative Talents Program

Chinese Academy of Sciences Program

University of Science and Technology of China

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3