Affiliation:
1. Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, China
Abstract
Despite achievements in suppressing dendrites and regulating Zn crystal growth, secondary aqueous Zn batteries are still rare in the market. Existing strategies mainly focus on electrode modification and electrolyte optimization, while the essential role of ion concentration in liquid-to-solid electrodeposition is neglected for a long time. Herein, the mechanism of concentration regulation in Zn electrodeposition is investigated in depth by combining electrochemical tests, post hoc characterization, and multiscale simulations. First, initial Zn electrodeposition is thermodynamically controlled epitaxial growth, whereas with the rapid depletion of ions, the concentration overpotential transcends the thermodynamic influence to kinetic control. Then, the evolution of the morphology from 2D sheets to 1D whiskers due to the concentration change is insightfully revealed by the morphological characterization and phase-field modeling. Furthermore, the depth of discharge (DOD) results in large concentration differences at the electrode–electrolyte interface, with a mild concentration distribution at lower DOD generating (002) crystal plane 2D sheets and a heavily varied concentration distribution at higher DOD yielding arbitrarily oriented 3D blocks. As a proof of concept, relaxation is introduced into two systems to homogenize the concentration distribution, revalidating the essential role of concentration in regulating electrodeposition, and two vital factors affecting the relaxation time, i.e., current density and electrode distance, are deeply investigated, demonstrating that the relaxation time is positively related to both and is more sensitive to the electrode distance. This work contributes to reacquainting aqueous batteries undergoing phase transitions and reveals a missing piece of the puzzle in regulating Zn electrodeposition.
Funder
Anhui Provincial Natural Science Foundation
National Innovative Talents Program
Chinese Academy of Sciences Program
University of Science and Technology of China
Publisher
Proceedings of the National Academy of Sciences
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献