Scattering evidence of positional charge correlations in polyelectrolyte complexes

Author:

Fang Yan N.12ORCID,Rumyantsev Artem M.13ORCID,Neitzel Angelika E.124ORCID,Liang Heyi1ORCID,Heller William T.5ORCID,Nealey Paul F.12ORCID,Tirrell Matthew V.12ORCID,de Pablo Juan J.12

Affiliation:

1. Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637

2. Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, IL 60439

3. Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695

4. Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611

5. Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831

Abstract

Polyelectrolyte complexation plays an important role in materials science and biology. The internal structure of the resultant polyelectrolyte complex (PEC) phase dictates properties such as physical state, response to external stimuli, and dynamics. Small-angle scattering experiments with X-rays and neutrons have revealed structural similarities between PECs and semidilute solutions of neutral polymers, where the total scattering function exhibits an Ornstein–Zernike form. In spite of consensus among different theoretical predictions, the existence of positional correlations between polyanion and polycation charges has not been confirmed experimentally. Here, we present small-angle neutron scattering profiles where the polycation scattering length density is matched to that of the solvent to extract positional correlations among anionic monomers. The polyanion scattering functions exhibit a peak at the inverse polymer screening radius of Coulomb interactions, q * ≈ 0.2 Å −1 . This peak, attributed to Coulomb repulsions between the fragments of polyanions and their attractions to polycations, is even more pronounced in the calculated charge scattering function that quantifies positional correlations of all polymer charges within the PEC. Screening of electrostatic interactions by adding salt leads to the gradual disappearance of this correlation peak, and the scattering functions regain an Ornstein–Zernike form. Experimental scattering results are consistent with those calculated from the random phase approximation, a scaling analysis, and molecular simulations.

Funder

U.S. Department of Energy

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3