Autism- and epilepsy-associated EEF1A2 mutations lead to translational dysfunction and altered actin bundling

Author:

Mohamed Muhaned S.12ORCID,Klann Eric12ORCID

Affiliation:

1. Center for Neural Science, New York University, New York, NY 10003

2. NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016

Abstract

Protein synthesis is a fundamental cellular process in neurons that is essential for synaptic plasticity and memory consolidation. Here, we describe our investigations of a neuron- and muscle-specific translation factor, e ukaryotic E longation F actor 1a2 (eEF1A2), which when mutated in patients results in autism, epilepsy, and intellectual disability. We characterize three EEF1A2 patient mutations, G70S, E122K, and D252H, and demonstrate that all three mutations decrease de novo protein synthesis and elongation rates in HEK293 cells. In mouse cortical neurons, the EEF1A2 mutations not only decrease de novo protein synthesis but also alter neuronal morphology, regardless of endogenous levels of eEF1A2, indicating that the mutations act via a toxic gain of function. We also show that eEF1A2 mutant proteins display increased tRNA binding and decreased actin-bundling activity, suggesting that these mutations disrupt neuronal function by decreasing tRNA availability and altering the actin cytoskeleton. More broadly, our findings are consistent with the idea that eEF1A2 acts as a bridge between translation and the actin cytoskeleton, which is essential for proper neuron development and function.

Funder

HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development

HHS | NIH | National Institute of Neurological Disorders and Stroke

U.S. Department of Defense

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3