First-order quantum phase transition in the hybrid metal–Mott insulator transition metal dichalcogenide 4Hb-TaS 2

Author:

Kumar Nayak Abhay1ORCID,Steinbok Aviram1,Roet Yotam1,Koo Jahyun1,Feldman Irena2,Almoalem Avior2,Kanigel Amit2ORCID,Yan Binghai1ORCID,Rosch Achim3ORCID,Avraham Nurit1,Beidenkopf Haim1ORCID

Affiliation:

1. Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 7610001, Israel

2. Department of Physics, Technion - Israel Institute of Technology, Haifa 32000, Israel

3. Institute for Theoretical Physics, University of Cologne, Zülpicher Str. 77, Köln 50937, Germany

Abstract

Coupling together distinct correlated and topologically nontrivial electronic phases of matter can potentially induce novel electronic orders and phase transitions among them. Transition metal dichalcogenide compounds serve as a bedrock for exploration of such hybrid systems. They host a variety of exotic electronic phases, and their Van der Waals nature enables to admix them, either by exfoliation and stacking or by stoichiometric growth, and thereby induce novel correlated complexes. Here, we investigate the compound 4Hb-TaS 2 that interleaves the Mott-insulating state of 1T-TaS 2 and the putative spin liquid it hosts together with the metallic state of 2H-TaS 2 and the low-temperature superconducting phase it harbors using scanning tunneling spectroscopy. We reveal a thermodynamic phase diagram that hosts a first-order quantum phase transition between a correlated Kondo-like cluster state and a depleted flat band state. We demonstrate that this intrinsic transition can be induced by an electric field and temperature as well as by manipulation of the interlayer coupling with the probe tip, hence allowing to reversibly toggle between the Kondo-like cluster and the depleted flat band states. The phase transition is manifested by a discontinuous change of the complete electronic spectrum accompanied by hysteresis and low-frequency noise. We find that the shape of the transition line in the phase diagram is determined by the local compressibility and the entropy of the two electronic states. Our findings set such heterogeneous structures as an exciting platform for systematic investigation and manipulation of Mott–metal transitions and strongly correlated phases and quantum phase transitions therein.

Funder

Deutsche Forschungsgemeinschaft

EC | European Research Council

Israel Science Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3