A multifunctional copper single-atom electrocatalyst aerogel for smart sensing and producing ammonia from nitrate

Author:

Li Panpan12,Liao Ling3,Fang Zhiwei1,Su Gehong3,Jin Zhaoyu4ORCID,Yu Guihua1ORCID

Affiliation:

1. Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712

2. College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China

3. College of Horticulture and College of Science, Sichuan Agricultural University, Chengdu 611130, China

4. Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China

Abstract

Despite modern chemistry’s success in providing affordable fertilizers for feeding the population and supporting the ammonia industry, ineffective nitrogen management has led to pollution of water resources and air, contributing to climate change. Here, we report a multifunctional copper single-atom electrocatalyst-based aerogel (Cu SAA) that integrates the multiscale structure of coordinated single-atomic sites and 3D channel frameworks. The Cu SAA demonstrates an impressive faradaic efficiency of 87% for NH 3 synthesis, as well as remarkable sensing performance with detection limits of 0.15 ppm for NO 3 and 1.19 ppm for NH 4 + . These multifunctional features enable precise control and conversion of nitrate to ammonia in the catalytic process, facilitating accurate regulation of the ammonium and nitrate ratios in fertilizers. We thus designed the Cu SAA into a smart and sustainable fertilizing system (SSFS), a prototype device for on-site automatic recycling of nutrients with precisely controlled nitrate/ammonium concentrations. The SSFS represents a forward step toward sustainable nutrient/waste recycling, thus permitting efficient nitrogen utilization of crops and mitigating pollutant emissions. This contribution exemplifies how electrocatalysis and nanotechnology can be potentially leveraged to enable sustainable agriculture.

Funder

U.S. Department of Energy

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3