Causal connectivity measures for pulse-output network reconstruction: Analysis and applications

Author:

Tian Zhong-qi K.123,Chen Kai123,Li Songting123,McLaughlin David W.4567,Zhou Douglas1238ORCID

Affiliation:

1. School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China

2. Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China

3. Ministry of Education Key Laboratory of Scientific and Engineering Computing, Shanghai Jiao Tong University, Shanghai 200240, China

4. Courant Institute of Mathematical Sciences, New York University, New York, NY 10012

5. Center for Neural Science, New York University, New York, NY 10012

6. Institute of Mathematical Sciences, New York University Shanghai, Shanghai 200122, China

7. Neuroscience Institute of New York University Langone Health, New York University, New York, NY 10016

8. Shanghai Frontier Science Center of Modern Analysis, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

The causal connectivity of a network is often inferred to understand network function. It is arguably acknowledged that the inferred causal connectivity relies on the causality measure one applies, and it may differ from the network’s underlying structural connectivity. However, the interpretation of causal connectivity remains to be fully clarified, in particular, how causal connectivity depends on causality measures and how causal connectivity relates to structural connectivity. Here, we focus on nonlinear networks with pulse signals as measured output, e.g., neural networks with spike output, and address the above issues based on four commonly utilized causality measures, i.e., time-delayed correlation coefficient, time-delayed mutual information, Granger causality, and transfer entropy. We theoretically show how these causality measures are related to one another when applied to pulse signals. Taking a simulated Hodgkin–Huxley network and a real mouse brain network as two illustrative examples, we further verify the quantitative relations among the four causality measures and demonstrate that the causal connectivity inferred by any of the four well coincides with the underlying network structural connectivity, therefore illustrating a direct link between the causal and structural connectivity. We stress that the structural connectivity of pulse-output networks can be reconstructed pairwise without conditioning on the global information of all other nodes in a network, thus circumventing the curse of dimensionality. Our framework provides a practical and effective approach for pulse-output network reconstruction.

Funder

Science and Technology Innovation 2030

Lingang Laboratory

MOST | National Natural Science Foundation of China

Shanghai Municipal Science and Technology Major Project

Publisher

Proceedings of the National Academy of Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3