The mechanics of correlated variability in segregated cortical excitatory subnetworks

Author:

Negrón Alex12,Getz Matthew P.234ORCID,Handy Gregory234ORCID,Doiron Brent234

Affiliation:

1. Department of Applied Mathematics, Illinois Institute of Technology, Chicago, IL 60616

2. Grossman Center for Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL 60637

3. Department of Neurobiology, University of Chicago, Chicago, IL 60637

4. Department of Statistics, University of Chicago, Chicago, IL 60637

Abstract

Understanding the genesis of shared trial-to-trial variability in neuronal population activity within the sensory cortex is critical to uncovering the biological basis of information processing in the brain. Shared variability is often a reflection of the structure of cortical connectivity since it likely arises, in part, from local circuit inputs. A series of experiments from segregated networks of (excitatory) pyramidal neurons in the mouse primary visual cortex challenge this view. Specifically, the across-network correlations were found to be larger than predicted given the known weak cross-network connectivity. We aim to uncover the circuit mechanisms responsible for these enhanced correlations through biologically motivated cortical circuit models. Our central finding is that coupling each excitatory subpopulation with a specific inhibitory subpopulation provides the most robust network-intrinsic solution in shaping these enhanced correlations. This result argues for the existence of excitatory–inhibitory functional assemblies in early sensory areas which mirror not just response properties but also connectivity between pyramidal cells. Furthermore, our findings provide theoretical support for recent experimental observations showing that cortical inhibition forms structural and functional subnetworks with excitatory cells, in contrast to the classical view that inhibition is a nonspecific blanket suppression of local excitation.

Funder

HHS | NIH | National Institute of Mental Health

Simons Foundation

Burroughs Wellcome Fund

DOD | USN | ONR | Office of Naval Research Global

Publisher

Proceedings of the National Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3