In situ ligand-modulated activation of inert Ce(III/IV) into ozonation catalyst for efficient water treatment

Author:

Zhang Jing1ORCID,Shan Chao12ORCID,Zhang Weiming12ORCID,Pan Bingcai12ORCID

Affiliation:

1. State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China

2. Research Center for Environmental Nanotechnology, Nanjing University, Nanjing 210023, China

Abstract

As a classic strategy to maximize catalytic activity, modulation of the electronic structure of central metal using organic ligands encounters great challenge in radical reactions exemplified by advanced oxidation processes (AOPs) due to operando destruction of employed ligands. Herein, we provide a paradigm achieving in situ ligand-modulated activation of the originally inert Ce(III/IV) for catalytic ozonation as a representative AOP widely applied in full-scale water treatment. Among the small-molecule carboxylates typically produced from pollutant degradation during ozonation, we find oxalate (OA) is a potent ligand to activate Ce(III/IV), inducing 11.5- and 5.8-fold elevation in rate constants of O 3 decomposition and atrazine degradation, respectively. The Ce(III)–OA complex is proved the catalytic active species to boost pollutant degradation, while the catalytic ozonation unusually involves both •OH-dependent and •OH-independent pathways with comparable contributions. Both experiment and density functional theory calculation results show the pronounced electron donating effect of OA as evidenced by the substantial decreases in the charge residing on Ce, the ionization potential, and the Ce(III/IV) electrode potential, affords the activation of the Ce center for efficient ozonation. A comprehensive kinetic model involving 67 reactions is established to verify and elaborate the catalytic mechanism. Moreover, with in situ OA production, trace Ce 3+ enables autocatalytic mineralization and codegradation of typical contaminants, which are not observed in case of Fe 2+ or Cu 2+ . In addition, Ce 3+ outperforms numerous state-of-the-art ozonation catalysts in terms of mass activity. This study sheds light on sustainable activation of the metal center harnessing operando ligands produced from the catalyzed reaction.

Funder

MOST | National Natural Science Foundation of China

MOE | Fundamental Research Funds for the Central Universities

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3