Positive effects of public breeding on US rice yields under future climate scenarios

Author:

Wang Diane R.1ORCID,Jamshidi Sajad1,Han Rongkui2ORCID,Edwards Jeremy D.3ORCID,McClung Anna M.3ORCID,McCouch Susan R.4ORCID

Affiliation:

1. Department of Agronomy, Purdue University, West Lafayette, IN 47901

2. Department of Plant Sciences, University of California, Davis, CA 95616

3. Dale Bumpers National Rice Research Center, United States Department of Agriculture - Agricultural Research Service, Stuttgart, AR 72160

4. Section of Plant Breeding and Genetics, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853

Abstract

In this study, we model and predict rice yields by integrating molecular marker variation, varietal productivity, and climate, focusing on the Southern U.S. rice-growing region. This region spans the states of Arkansas, Louisiana, Texas, Mississippi, and Missouri and accounts for 85% of total U.S. rice production. By digitizing and combining four decades of county-level variety acreage data (1970 to 2015) with varietal information from genotyping-by-sequencing data, we estimate annual historical county-level allele frequencies. These allele frequencies are used together with county-level weather and yield data to develop ten machine learning models for yield prediction. A two-layer meta-learner ensemble model that combines all ten methods is externally evaluated against observations from historical Uniform Regional Rice Nursery trials (1980 to 2018) conducted in the same states. Finally, the ensemble model is used with forecasted weather from the Coupled Model Intercomparison Project across the 110 rice-growing counties to predict production in the coming decades for Composite Variety Groups assembled based on year of release, breeding program, and several breeding trends. Results indicate positive effects over time of public breeding on rice resilience to future climates, and potential reasons are discussed.

Funder

USDA | National Institute of Food and Agriculture

Publisher

Proceedings of the National Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3