Filling constraints for spin-orbit coupled insulators in symmorphic and nonsymmorphic crystals

Author:

Watanabe Haruki,Po Hoi Chun,Vishwanath Ashvin,Zaletel Michael

Abstract

We determine conditions on the filling of electrons in a crystalline lattice to obtain the equivalent of a band insulator—a gapped insulator with neither symmetry breaking nor fractionalized excitations. We allow for strong interactions, which precludes a free particle description. Previous approaches that extend the Lieb–Schultz–Mattis argument invoked spin conservation in an essential way and cannot be applied to the physically interesting case of spin-orbit coupled systems. Here we introduce two approaches: The first one is an entanglement-based scheme, and the second one studies the system on an appropriate flat “Bieberbach” manifold to obtain the filling conditions for all 230 space groups. These approaches assume only time reversal rather than spin rotation invariance. The results depend crucially on whether the crystal symmetry is symmorphic. Our results clarify when one may infer the existence of an exotic ground state based on the absence of order, and we point out applications to experimentally realized materials. Extensions to new situations involving purely spin models are also mentioned.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 141 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3