Author:
Babin Brett M.,Bergkessel Megan,Sweredoski Michael J.,Moradian Annie,Hess Sonja,Newman Dianne K.,Tirrell David A.
Abstract
Microbial quiescence and slow growth are ubiquitous physiological states, but their study is complicated by low levels of metabolic activity. To address this issue, we used a time-selective proteome-labeling method [bioorthogonal noncanonical amino acid tagging (BONCAT)] to identify proteins synthesized preferentially, but at extremely low rates, under anaerobic survival conditions by the opportunistic pathogenPseudomonas aeruginosa. One of these proteins is a transcriptional regulator that has no homology to any characterized protein domains and is posttranscriptionally up-regulated during survival and slow growth. This small, acidic protein associates with RNA polymerase, and chromatin immunoprecipitation (ChIP) followed by high-throughput sequencing suggests that the protein associates with genomic DNA through this interaction. ChIP signal is found both in promoter regions and throughout the coding sequences of many genes and is particularly enriched at ribosomal protein genes and in the promoter regions of rRNA genes. Deletion of the gene encoding this protein affects expression of these and many other genes and impacts biofilm formation, secondary metabolite production, and fitness in fluctuating conditions. On the basis of these observations, we have designated the protein SutA (survival under transitions A).
Funder
HHS | National Institutes of Health
DOD | Army Research Office
Gordon and Betty Moore Foundation
Publisher
Proceedings of the National Academy of Sciences
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献