Evolution of stickleback in 50 years on earthquake-uplifted islands

Author:

Lescak Emily A.,Bassham Susan L.,Catchen Julian,Gelmond Ofer,Sherbick Mary L.,von Hippel Frank A.,Cresko William A.ORCID

Abstract

How rapidly can animal populations in the wild evolve when faced with sudden environmental shifts? Uplift during the 1964 Great Alaska Earthquake abruptly created freshwater ponds on multiple islands in Prince William Sound and the Gulf of Alaska. In the short time since the earthquake, the phenotypes of resident freshwater threespine stickleback fish on at least three of these islands have changed dramatically from their oceanic ancestors. To test the hypothesis that these freshwater populations were derived from oceanic ancestors only 50 y ago, we generated over 130,000 single-nucleotide polymorphism genotypes from more than 1,000 individuals using restriction site-associated DNA sequencing (RAD-seq). Population genomic analyses of these data support the hypothesis of recent and repeated, independent colonization of freshwater habitats by oceanic ancestors. We find evidence of recurrent gene flow between oceanic and freshwater ecotypes where they co-occur. Our data implicate natural selection in phenotypic diversification and support the hypothesis that the metapopulation organization of this species helps maintain a large pool of genetic variation that can be redeployed rapidly when oceanic stickleback colonize freshwater environments. We find that the freshwater populations, despite population genetic analyses clearly supporting their young age, have diverged phenotypically from oceanic ancestors to nearly the same extent as populations that were likely founded thousands of years ago. Our results support the intriguing hypothesis that most stickleback evolution in fresh water occurs within the first few decades after invasion of a novel environment.

Funder

National Science Foundation

HHS | National Institutes of Health

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 154 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3