Author:
Kyathanahalli Chandrashekara,Organ Kenna,Moreci Rebecca S.,Anamthathmakula Prashanth,Hassan Sonia S.,Caritis Steve N.,Jeyasuria Pancharatnam,Condon Jennifer C.
Abstract
We previously identified myometrial caspase-3 (CASP3) as a potential regulator of uterine quiescence. We also determined that during pregnancy, the functional activation of uterine CASP3 is likely governed by an integrated endoplasmic reticulum stress response (ERSR) and is consequently limited by an increased unfolded protein response (UPR). The present study examined the functional relevance of uterine UPR-ERSR in maintaining myometrial quiescence and regulating the timing of parturition. In vitro analysis of the human uterine myocyte hTERT-HM cell line revealed that tunicamycin (TM)-induced ERSR modified uterine myocyte contractile responsiveness. Accordingly, alteration of in vivo uterine UPR-ERSR using a pregnant mouse model significantly modified gestational length. We determined that “normal” gestational activation of the ERSR-induced CASP3 and caspase 7 (CASP7) maintains uterine quiescence through previously unidentified proteolytic targeting of the gap junction protein, alpha 1(GJA1); however, surprisingly, TM-induced uterine ERSR triggered an exaggerated UPR that eliminated uterine CASP3 and 7 tocolytic action precociously. These events allowed for a premature increase in myometrial GJA1 levels, elevated contractile responsiveness, and the onset of preterm labor. Importantly, a successful reversal of the magnified ERSR-induced preterm birth phenotype could be achieved by pretreatment with 4-phenylbutrate, a chaperone protein mimic.
Funder
HHS | NIH | National Institute of Child Health and Human Development
March of Dimes Foundation
Publisher
Proceedings of the National Academy of Sciences
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献