Phosphorylation of the Cav3.2 T-type calcium channel directly regulates its gating properties

Author:

Blesneac Iulia,Chemin Jean,Bidaud Isabelle,Huc-Brandt Sylvaine,Vandermoere Franck,Lory Philippe

Abstract

Phosphorylation is a major mechanism regulating the activity of ion channels that remains poorly understood with respect to T-type calcium channels (Cav3). These channels are low voltage-activated calcium channels that play a key role in cellular excitability and various physiological functions. Their dysfunction has been linked to several neurological disorders, including absence epilepsy and neuropathic pain. Recent studies have revealed that T-type channels are modulated by a variety of serine/threonine protein kinase pathways, which indicates the need for a systematic analysis of T-type channel phosphorylation. Here, we immunopurified Cav3.2 channels from rat brain, and we used high-resolution MS to construct the first, to our knowledge, in vivo phosphorylation map of a voltage-gated calcium channel in a mammalian brain. We identified as many as 34 phosphorylation sites, and we show that the vast majority of these sites are also phosphorylated on the human Cav3.2 expressed in HEK293T cells. In patch-clamp studies, treatment of the channel with alkaline phosphatase as well as analysis of dephosphomimetic mutants revealed that phosphorylation regulates important functional properties of Cav3.2 channels, including voltage-dependent activation and inactivation and kinetics. We also identified that the phosphorylation of a locus situated in the loop I-II S442/S445/T446 is crucial for this regulation. Our data show that Cav3.2 channels are highly phosphorylated in the mammalian brain and establish phosphorylation as an important mechanism involved in the dynamic regulation of Cav3.2 channel gating properties.

Funder

Agence Nationale de la Recherche, France

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3