Effect of aging on muscle mitochondrial substrate utilization in humans

Author:

Petersen Kitt Falk,Morino Katsutaro,Alves Tiago C.,Kibbey Richard G.,Dufour Sylvie,Sono Saki,Yoo Peter S.,Cline Gary W.,Shulman Gerald I.

Abstract

Previous studies have implicated age-associated reductions in mitochondrial oxidative phosphorylation activity in skeletal muscle as a predisposing factor for intramyocellular lipid (IMCL) accumulation and muscle insulin resistance (IR) in the elderly. To further investigate potential alterations in muscle mitochondrial function associated with aging, we assessed basal and insulin-stimulated rates of muscle pyruvate dehydrogenase (VPDH) flux relative to citrate synthase flux (VCS) in healthy lean, elderly subjects and healthy young body mass index- and activity-matched subjects. VPDH/VCS flux was assessed from the 13C incorporation from of infused [1-13C] glucose into glutamate [4-13C] relative to alanine [3-13C] assessed by LC-tandem MS in muscle biopsies. Insulin-stimulated rates of muscle glucose uptake were reduced by 25% (P < 0.01) in the elderly subjects and were associated with ∼70% (P < 0.04) increase in IMCL, assessed by 1H magnetic resonance spectroscopy. Basal VPDH/VCS fluxes were similar between the groups (young: 0.20 ± 0.03; elderly: 0.14 ± 0.03) and increased approximately threefold in the young subjects following insulin stimulation. However, this increase was severely blunted in the elderly subjects (young: 0.55 ± 0.04; elderly: 0.18 ± 0.02, P = 0.0002) and was associated with an ∼40% (P = 0.004) reduction in insulin activation of Akt. These results provide new insights into acquired mitochondrial abnormalities associated with aging and demonstrate that age-associated reductions in muscle mitochondrial function and increased IMCL are associated with a marked inability of mitochondria to switch from lipid to glucose oxidation during insulin stimulation.

Funder

HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases

HHS | National Institutes of Health

Novartis Pharmaceuticals

American Diabetes Association

The American Diabetes Association Research Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3