Nanopurification of silicon from 84% to 99.999% purity with a simple and scalable process

Author:

Zong Linqi,Zhu Bin,Lu Zhenda,Tan Yingling,Jin Yan,Liu Nian,Hu Yue,Gu Shuai,Zhu Jia,Cui Yi

Abstract

Silicon, with its great abundance and mature infrastructure, is a foundational material for a range of applications, such as electronics, sensors, solar cells, batteries, and thermoelectrics. These applications rely on the purification of Si to different levels. Recently, it has been shown that nanosized silicon can offer additional advantages, such as enhanced mechanical properties, significant absorption enhancement, and reduced thermal conductivity. However, current processes to produce and purify Si are complex, expensive, and energy-intensive. Here, we show a nanopurification process, which involves only simple and scalable ball milling and acid etching, to increase Si purity drastically [up to 99.999% (wt %)] directly from low-grade and low-cost ferrosilicon [84% (wt %) Si; ∼$1/kg]. It is found that the impurity-rich regions are mechanically weak as breaking points during ball milling and thus, exposed on the surface, and they can be conveniently and effectively removed by chemical etching. We discovered that the purity goes up with the size of Si particles going down, resulting in high purity at the sub–100-nm scale. The produced Si nanoparticles with high purity and small size exhibit high performance as Li ion battery anodes, with high reversible capacity (1,755 mAh g−1) and long cycle life (73% capacity retention over 500 cycles). This nanopurification process provides a complimentary route to produce Si, with finely controlled size and purity, in a diverse set of applications.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference39 articles.

1. DMR (2006) Thermoelectrics Handbook Macro to Nano (CRC, Boca Raton, FL)

2. Green MA (1998) Solar Cells: Operating Principles (Technology and System Applications, Englewood Cliffs, NJ)

3. James D Plummer MD (2000) Silicon vlsi Technology (Pearson Education, Elnet Software City, India), pp 49–91

4. A vision for crystalline silicon photovoltaics

5. Materials Availability Expands the Opportunity for Large-Scale Photovoltaics Deployment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3