Warm spring reduced carbon cycle impact of the 2012 US summer drought

Author:

Wolf SebastianORCID,Keenan Trevor F.,Fisher Joshua B.,Baldocchi Dennis D.ORCID,Desai Ankur R.ORCID,Richardson Andrew D.,Scott Russell L.,Law Beverly E.,Litvak Marcy E.,Brunsell Nathaniel A.,Peters Wouter,van der Laan-Luijkx Ingrid T.ORCID

Abstract

The global terrestrial carbon sink offsets one-third of the world’s fossil fuel emissions, but the strength of this sink is highly sensitive to large-scale extreme events. In 2012, the contiguous United States experienced exceptionally warm temperatures and the most severe drought since the Dust Bowl era of the 1930s, resulting in substantial economic damage. It is crucial to understand the dynamics of such events because warmer temperatures and a higher prevalence of drought are projected in a changing climate. Here, we combine an extensive network of direct ecosystem flux measurements with satellite remote sensing and atmospheric inverse modeling to quantify the impact of the warmer spring and summer drought on biosphere-atmosphere carbon and water exchange in 2012. We consistently find that earlier vegetation activity increased spring carbon uptake and compensated for the reduced uptake during the summer drought, which mitigated the impact on net annual carbon uptake. The early phenological development in the Eastern Temperate Forests played a major role for the continental-scale carbon balance in 2012. The warm spring also depleted soil water resources earlier, and thus exacerbated water limitations during summer. Our results show that the detrimental effects of severe summer drought on ecosystem carbon storage can be mitigated by warming-induced increases in spring carbon uptake. However, the results also suggest that the positive carbon cycle effect of warm spring enhances water limitations and can increase summer heating through biosphere–atmosphere feedbacks.

Funder

European Commission

U.S. Department of Energy

National Science Foundation

National Aeronautics and Space Administration

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference39 articles.

1. Increasing drought under global warming in observations and models;Dai;Nat Clim Chang,2013

2. Global warming and changes in drought;Trenberth;Nat Clim Chang,2014

3. IPCC (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, ed Stocker TF (Cambridge Univ Press, Cambridge, UK).

4. Europe-wide reduction in primary productivity caused by the heat and drought in 2003

5. Net carbon uptake has increased through warming-induced changes in temperate forest phenology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3