Author:
Gao Daxing,Li Tuo,Li Xiao-Dong,Chen Xiang,Li Quan-Zhen,Wight-Carter Mary,Chen Zhijian J.
Abstract
TREX1 is an exonuclease that digests DNA in the cytoplasm. Loss-of-function mutations of TREX1 are linked to Aicardi–Goutieres Syndrome (AGS) and systemic lupus erythematosus (SLE) in humans. Trex1−/− mice exhibit autoimmune and inflammatory phenotypes that are associated with elevated expression of interferon (IFN)-induced genes (ISGs). Cyclic GMP-AMP (cGAMP) synthase (cGAS) is a cytosolic DNA sensor that activates the IFN pathway. Upon binding to DNA, cGAS is activated to catalyze the synthesis of cGAMP, which functions as a second messenger that binds and activates the adaptor protein STING to induce IFNs and other cytokines. Here we show that genetic ablation of cGas in Trex1−/− mice eliminated all detectable pathological and molecular phenotypes, including ISG induction, autoantibody production, aberrant T-cell activation, and lethality. Even deletion of just one allele of cGas largely rescued the phenotypes of Trex1−/− mice. Similarly, deletion of cGas in mice lacking DNaseII, a lysosomal enzyme that digests DNA, rescued the lethal autoimmune phenotypes of the DNaseII−/− mice. Through quantitative mass spectrometry, we found that cGAMP accumulated in mouse tissues deficient in Trex1 or DNaseII and that this accumulation was dependent on cGAS. These results demonstrate that cGAS activation causes the autoimmune diseases in Trex1−/− and DNaseII−/− mice and suggest that inhibition of cGAS may lead to prevention and treatment of some human autoimmune diseases caused by self-DNA.
Funder
Howard Hughes Medical Institute
National Institute of Health
Lupus Research Institute
Welch Foundation
Cancer Research and Prevention Institute of Texas
Publisher
Proceedings of the National Academy of Sciences
Cited by
536 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献