Disulphide-reduced psoriasin is a human apoptosis-inducing broad-spectrum fungicide

Author:

Hein Kyaw Zaw,Takahashi Hitoshi,Tsumori Toshiko,Yasui Yukihiko,Nanjoh Yasuko,Toga Tetsuo,Wu Zhihong,Grötzinger Joachim,Jung Sascha,Wehkamp Jan,Schroeder Bjoern O.ORCID,Schroeder Jens M.,Morita Eishin

Abstract

The unexpected resistance of psoriasis lesions to fungal infections suggests local production of an antifungal factor. We purified Trichophyton rubrum-inhibiting activity from lesional psoriasis scale extracts and identified the Cys-reduced form of S100A7/psoriasin (redS100A7) as a principal antifungal factor. redS100A7 inhibits various filamentous fungi, including the mold Aspergillus fumigatus, but not Candida albicans. Antifungal activity was inhibited by Zn2+, suggesting that redS100A7 interferes with fungal zinc homeostasis. Because S100A7-mutants lacking a single cysteine are no longer antifungals, we hypothesized that redS100A7 is acting as a Zn2+-chelator. Immunogold electron microscopy studies revealed that it penetrates fungal cells, implicating possible intracellular actions. In support with our hypothesis, the cell-penetrating Zn2+-chelator TPEN was found to function as a broad-spectrum antifungal. Ultrastructural analyses of redS100A7-treated T. rubrum revealed marked signs of apoptosis, suggesting that its mode of action is induction of programmed cell death. TUNEL, SYTOX-green analyses, and caspase-inhibition studies supported this for both T. rubrum and A. fumigatus. Whereas redS100A7 can be generated from oxidized S100A7 by action of thioredoxin or glutathione, elevated redS100A7 levels in fungal skin infection indicate induction of both S100A7 and its reducing agent in vivo. To investigate whether redS100A7 and TPEN are antifungals in vivo, we used a guinea pig tinea pedes model for fungal skin infections and a lethal mouse Aspergillus infection model for lung infection and found antifungal activity in both in vivo animal systems. Thus, selective fungal cell-penetrating Zn2+-chelators could be useful as an urgently needed novel antifungal therapeutic, which induces programmed cell death in numerous fungi.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3