Genome-wide identification of CCA1 targets uncovers an expanded clock network in Arabidopsis

Author:

Nagel Dawn H.,Doherty Colleen J.,Pruneda-Paz Jose L.,Schmitz Robert J.,Ecker Joseph R.,Kay Steve A.

Abstract

The circadian clock in Arabidopsis exerts a critical role in timing multiple biological processes and stress responses through the regulation of up to 80% of the transcriptome. As a key component of the clock, the Myb-like transcription factor CIRCADIAN CLOCK ASSOCIATED1 (CCA1) is able to initiate and set the phase of clock-controlled rhythms and has been shown to regulate gene expression by binding directly to the evening element (EE) motif found in target gene promoters. However, the precise molecular mechanisms underlying clock regulation of the rhythmic transcriptome, specifically how clock components connect to clock output pathways, is poorly understood. In this study, using ChIP followed by deep sequencing of CCA1 in constant light (LL) and diel (LD) conditions, more than 1,000 genomic regions occupied by CCA1 were identified. CCA1 targets are enriched for a myriad of biological processes and stress responses, providing direct links to clock-controlled pathways and suggesting that CCA1 plays an important role in regulating a large subset of the rhythmic transcriptome. Although many of these target genes are evening expressed and contain the EE motif, a significant subset is morning phased and enriched for previously unrecognized motifs associated with CCA1 function. Furthermore, this work revealed several CCA1 targets that do not cycle in either LL or LD conditions. Together, our results emphasize an expanded role for the clock in regulating a diverse category of genes and key pathways in Arabidopsis and provide a comprehensive resource for future functional studies.

Funder

HHS | National Institutes of Health

National Science Foundation

Howard Hughes Medical Institute and the Gordon and Betty Moore Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3