Shifting the feeding of mice to the rest phase creates metabolic alterations, which, on their own, shift the peripheral circadian clocks by 12 hours

Author:

Mukherji Atish,Kobiita Ahmad,Chambon Pierre

Abstract

The molecular mechanisms underlying the events through which alterations in diurnal activities impinge on peripheral circadian clocks (PCCs), and reciprocally how the PCCs affect metabolism, thereby generating pathologies, are still poorly understood. Here, we deciphered how switching the diurnal feeding from the active to the rest phase, i.e., restricted feeding (RF), immediately creates a hypoinsulinemia during the active phase, which initiates a metabolic reprogramming by increasing FFA and glucagon levels. In turn, peroxisome proliferator-activated receptor alpha (PPARα) activation by free fatty acid (FFA), and cAMP response element-binding protein (CREB) activation by glucagon, lead to further metabolic alterations during the circadian active phase, as well as to aberrant activation of expression of the PCC components nuclear receptor subfamily 1, group D, member 1 (Nr1d1/RevErbα), Period (Per1 and Per2). Moreover, hypoinsulinemia leads to an increase in glycogen synthase kinase 3β (GSK3β) activity that, through phosphorylation, stabilizes and increases the level of the RevErbα protein during the active phase. This increase then leads to an untimely repression of expression of the genes containing a RORE DNA binding sequence (DBS), including the Bmal1 gene, thereby initiating in RF mice a 12-h PCC shift to which the CREB-mediated activation of Per1, Per2 by glucagon modestly contributes. We also show that the reported corticosterone extraproduction during the RF active phase reflects an adrenal aberrant activation of CREB signaling, which selectively delays the activation of the PPARα–RevErbα axis in muscle and heart and accounts for the retarded shift of their PCCs.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 95 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3