Unique transmembrane domain interactions differentially modulate integrin αvβ3 and αIIbβ3 function

Author:

Litvinov Rustem I.ORCID,Mravic MarcoORCID,Zhu Hua,Weisel John W.,DeGrado William F.,Bennett Joel S.

Abstract

Lateral transmembrane (TM) helix–helix interactions between single-span membrane proteins play an important role in the assembly and signaling of many cell-surface receptors. Often, these helices contain two highly conserved yet distinct interaction motifs, arranged such that the motifs cannot be engaged simultaneously. However, there is sparse experimental evidence that dual-engagement mechanisms play a role in biological signaling. Here, we investigate the function of the two conserved interaction motifs in the TM domain of the integrin β3-subunit. The first motif uses reciprocating “large-large-small” amino acid packing to mediate the interaction of the β3 and αIIb TM domains and maintain the inactive resting conformation of the platelet integrin αIIbβ3. The second motif, S-x3-A-x3-I, is a variant of the classical “G-x3-G” motif. Using site-directed mutagenesis, optical trap-based force spectroscopy, and molecular modeling, we show that S-x3-A-x3-I does not engage αIIb but rather mediates the interaction of the β3 TM domain with the TM domain of the αv-subunit of the integrin αvβ3. Like αIIbβ3, αvβ3 on circulating platelets is inactive, and in the absence of platelet stimulation is unable to interact with components of the subendothelial matrix. However, disrupting any residue in the β3 S-x3-A-x3-I motif by site-directed mutations is sufficient to induce αvβ3 binding to the αvβ3 ligand osteopontin and to the monoclonal antibody WOW-1. Thus, the β3-integrin TM domain is able to engage in two mutually exclusive interactions that produce alternate α-subunit pairing, creating two integrins with distinct biological functions.

Funder

HHS | National Institutes of Health

Howard Hughes Medical Institute

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3