A diurnal carbon engine explains 13C-enriched carbonates without increasing the global production of oxygen

Author:

Geyman Emily C.ORCID,Maloof Adam C.

Abstract

In the past 3 billion years, significant volumes of carbonate with high carbon-isotopic (δ13C) values accumulated on shallow continental shelves. These deposits frequently are interpreted as records of elevated global organic carbon burial. However, through the stoichiometry of primary production, organic carbon burial releases a proportional amount of O2, predicting unrealistic rises in atmospheric pO2 during the 1 to 100 million year-long positive δ13C excursions that punctuate the geological record. This carbon–oxygen paradox assumes that the δ13C of shallow water carbonates reflects the δ13C of global seawater-dissolved inorganic carbon (DIC). However, the δ13C of modern shallow-water carbonate sediment is higher than expected for calcite or aragonite precipitating from seawater. We explain elevated δ13C in shallow carbonates with a diurnal carbon cycle engine, where daily transfer of carbon between organic and inorganic reservoirs forces coupled changes in carbonate saturation (ΩA) and δ13C of DIC. This engine maintains a carbon-cycle hysteresis that is most amplified in shallow, sluggishly mixed waters with high rates of photosynthesis, and provides a simple mechanism for the observed δ13C-decoupling between global seawater DIC and shallow carbonate, without burying organic matter or generating O2.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference54 articles.

1. Carbon-13 fractionation between aragonite and calcite;Rubinson;Geochem. Cosmochim. Acta,1969

2. Carbon isotopic fractionation in synthetic aragonite and calcite: Effects of temperature and precipitation rate;Romanek;Geochem. Cosmochim. Acta,1992

3. Interpreting carbon-isotope excursions: carbonates and organic matter

4. A re-evaluation of facies on Great Bahama Bank II: Variations in the δ 13 C, δ 18 O and mineralogy of surface sediments;Swart;Int. Assoc. Sedimentol. Spec. Publ.,2009

5. The stable carbon isotopic composition of organic material in platform derived sediments: implications for reconstructing the global carbon cycle

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3