Trophic control of cryptic coralline algal diversity

Author:

Hind Katharine R.,Starko SamuelORCID,Burt Jenn M.,Lemay Matthew A.ORCID,Salomon Anne K.,Martone Patrick T.ORCID

Abstract

Understanding how trophic dynamics drive variation in biodiversity is essential for predicting the outcomes of trophic downgrading across the world’s ecosystems. However, assessing the biodiversity of morphologically cryptic lineages can be problematic, yet may be crucial to understanding ecological patterns. Shifts in keystone predation that favor increases in herbivore abundance tend to have negative consequences for the biodiversity of primary producers. However, in nearshore ecosystems, coralline algal cover increases when herbivory is intense, suggesting that corallines may uniquely benefit from trophic downgrading. Because many coralline algal species are morphologically cryptic and their diversity has been globally underestimated, increasing the resolution at which we distinguish species could dramatically alter our conclusions about the consequences of trophic dynamics for this group. In this study, we used DNA barcoding to compare the diversity and composition of cryptic coralline algal assemblages at sites that differ in urchin biomass and keystone predation by sea otters. We show that while coralline cover is greater in urchin-dominated sites (or “barrens”), which are subject to intense grazing, coralline assemblages in these urchin barrens are significantly less diverse than in kelp forests and are dominated by only 1 or 2 species. These findings clarify how food web structure relates to coralline community composition and reconcile patterns of total coralline cover with the widely documented pattern that keystone predation promotes biodiversity. Shifts in coralline diversity and distribution associated with transitions from kelp forests to urchin barrens could have ecosystem-level effects that would be missed by ignoring cryptic species’ identities.

Funder

Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3