Wnt canonical pathway activates macropinocytosis and lysosomal degradation of extracellular proteins

Author:

Tejeda-Muñoz Nydia,Albrecht Lauren V.,Bui Maggie H.,De Robertis Edward M.

Abstract

Canonical Wnt signaling is emerging as a major regulator of endocytosis. Wnt treatment markedly increased the endocytosis and degradation in lysosomes of BSA. In this study, we report that in addition to receptor-mediated endocytosis, Wnt also triggers the intake of large amounts of extracellular fluid by macropinocytosis, a nonreceptor-mediated actin-driven process. Macropinocytosis induction is rapid and independent of protein synthesis. In the presence of Wnt, large amounts of nutrient-rich packages such as proteins and glycoproteins were channeled into lysosomes after fusing with smaller receptor-mediated vesicles containing glycogen synthase kinase 3 (GSK3) and protein arginine ethyltransferase 1 (PRMT1), an enzyme required for canonical Wnt signaling. Addition of Wnt3a, as well as overexpression of Disheveled (Dvl), Frizzled (Fz8), or dominant-negative Axin induced endocytosis. Depletion of the tumor suppressors adenomatous polyposis coli (APC) or Axin dramatically increased macropinocytosis, defined by incorporation of the high molecular weight marker tetramethylrhodamine (TMR)-dextran and its blockage by the Na+/H+ exchanger ethylisopropyl amiloride (EIPA). Macropinocytosis was blocked by dominant-negative vacuolar protein sorting 4 (Vps4), indicating that the Wnt pathway is dependent on multivesicular body formation, a process called microautophagy. SW480 colorectal cancer cells displayed constitutive macropinocytosis and increased extracellular protein degradation in lysosomes, which were suppressed by restoring full-length APC. Accumulation of the transcriptional activator β-catenin in the nucleus of SW480 cells was inhibited by methyltransferase inhibition, EIPA, or the diuretic amiloride. The results indicate that Wnt signaling switches metabolism toward nutrient acquisition by engulfment of extracellular fluids and suggest possible treatments for Wnt-driven cancer progression.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 82 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3