IFITM3 protects the heart during influenza virus infection

Author:

Kenney Adam D.,McMichael Temet M.,Imas Alexander,Chesarino Nicholas M.ORCID,Zhang Lizhi,Dorn Lisa E.,Wu Qian,Alfaour Omar,Amari Foued,Chen Min,Zani Ashley,Chemudupati Mahesh,Accornero Federica,Coppola Vincenzo,Rajaram Murugesan V. S.,Yount Jacob S.

Abstract

Influenza virus can disseminate from the lungs to the heart in severe infections and can induce cardiac pathology, but this has been difficult to study due to a lack of small animal models. In humans, polymorphisms in the gene encoding the antiviral restriction factor IFN-induced transmembrane protein 3 (IFITM3) are associated with susceptibility to severe influenza, but whether IFITM3 deficiencies contribute to cardiac dysfunction during infection is unclear. We show that IFITM3 deficiency in a new knockout (KO) mouse model increases weight loss and mortality following influenza virus infections. We investigated this enhanced pathogenesis with the A/PR/8/34 (H1N1) (PR8) influenza virus strain, which is lethal in KO mice even at low doses, and observed increased replication of virus in the lungs, spleens, and hearts of KO mice compared with wild-type (WT) mice. Infected IFITM3 KO mice developed aberrant cardiac electrical activity, including decreased heart rate and irregular, arrhythmic RR (interbeat) intervals, whereas WT mice exhibited a mild decrease in heart rate without irregular RR intervals. Cardiac electrical dysfunction in PR8-infected KO mice was accompanied by increased activation of fibrotic pathways and fibrotic lesions in the heart. Infection with a sublethal dose of a less virulent influenza virus strain (A/WSN/33 [H1N1]) resulted in a milder cardiac electrical dysfunction in KO mice that subsided as the mice recovered. Our findings reveal an essential role for IFITM3 in limiting influenza virus replication and pathogenesis in heart tissue and establish IFITM3 KO mice as a powerful model for studying mild and severe influenza virus-induced cardiac dysfunction.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3