Abstract
Intestinal epithelial cell (IEC) shedding is a fundamental response to intestinal damage, yet underlying mechanisms and functions have been difficult to define. Here we model chronic intestinal damage in zebrafish larvae using the nonsteroidal antiinflammatory drug (NSAID) Glafenine. Glafenine induced the unfolded protein response (UPR) and inflammatory pathways in IECs, leading to delamination. Glafenine-induced inflammation was augmented by microbial colonization and associated with changes in intestinal and environmental microbiotas. IEC shedding was a UPR-dependent protective response to Glafenine that restricts inflammation and promotes animal survival. Other NSAIDs did not induce IEC delamination; however, Glafenine also displays off-target inhibition of multidrug resistance (MDR) efflux pumps. We found a subset of MDR inhibitors also induced IEC delamination, implicating MDR efflux pumps as cellular targets underlying Glafenine-induced enteropathy. These results implicate IEC delamination as a protective UPR-mediated response to chemical injury, and uncover an essential role for MDR efflux pumps in intestinal homeostasis.
Funder
HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases
HHS | NIH | NIH Office of the Director
HHS | NIH | National Institute of Allergy and Infectious Diseases
HHS | NIH | National Cancer Institute
Publisher
Proceedings of the National Academy of Sciences
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献