Abstract
Electronic matter waves traveling through the weak and smoothly varying disorder potential of a semiconductor show a characteristic branching behavior instead of a smooth spreading of flow. By transferring this phenomenon to optics, we demonstrate numerically how the branched flow of light can be controlled to propagate along a single branch rather than along many of them at the same time. Our method is based on shaping the incoming wavefront and only requires partial knowledge of the system’s transmission matrix. We show that the light flowing along a single branch has a broadband frequency stability such that one can even steer pulses along selected branches—a prospect with many interesting possibilities for wave control in disordered environments.
Funder
European Commission
Austrian Academy of Sciences
Publisher
Proceedings of the National Academy of Sciences
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献