Chemical and microbial diversity covary in fresh water to influence ecosystem functioning

Author:

Tanentzap Andrew J.,Fitch AmeliaORCID,Orland Chloe,Emilson Erik J. S.ORCID,Yakimovich Kurt M.,Osterholz Helena,Dittmar Thorsten

Abstract

Invisible to the naked eye lies a tremendous diversity of organic molecules and organisms that make major contributions to important biogeochemical cycles. However, how the diversity and composition of these two communities are interlinked remains poorly characterized in fresh waters, despite the potential for chemical and microbial diversity to promote one another. Here we exploited gradients in chemodiversity within a common microbial pool to test how chemical and biological diversity covary and characterized the implications for ecosystem functioning. We found that both chemodiversity and genes associated with organic matter decomposition increased as more plant litterfall accumulated in experimental lake sediments, consistent with scenarios of future environmental change. Chemical and microbial diversity were also positively correlated, with dissolved organic matter having stronger effects on microbes than vice versa. Under our experimental scenarios that increased sediment organic matter from 5 to 25% or darkened overlying waters by 2.5 times, the resulting increases in chemodiversity could increase greenhouse gas concentrations in lake sediments by an average of 1.5 to 2.7 times, when all of the other effects of litterfall and water color were considered. Our results open a major new avenue for research in aquatic ecosystems by exposing connections between chemical and microbial diversity and their implications for the global carbon cycle in greater detail than ever before.

Funder

RCUK | Natural Environment Research Council

Gates Cambridge Trust

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3