Stochastic geometry sensing and polarization in a lipid kinase–phosphatase competitive reaction

Author:

Hansen Scott D.ORCID,Huang William Y. C.,Lee Young Kwang,Bieling Peter,Christensen Sune M.,Groves Jay T.

Abstract

Phosphorylation reactions, driven by competing kinases and phosphatases, are central elements of cellular signal transduction. We reconstituted a native eukaryotic lipid kinase–phosphatase reaction that drives the interconversion of phosphatidylinositol-4-phosphate [PI(4)P] and phosphatidylinositol-4,5-phosphate [PI(4,5)P2] on membrane surfaces. This system exhibited bistability and formed spatial composition patterns on supported membranes. In smaller confined regions of membrane, rapid diffusion ensures the system remains spatially homogeneous, but the final outcome—a predominantly PI(4)P or PI(4,5)P2 membrane composition—was governed by the size of the reaction environment. In larger confined regions, interplay between the reactions, diffusion, and confinement created a variety of differentially patterned states, including polarization. Experiments and kinetic modeling reveal how these geometric confinement effects arise from a mechanism based on stochastic fluctuations in the copy number of membrane-bound kinases and phosphatases. The underlying requirements for such behavior are unexpectedly simple and likely to occur in natural biological signaling systems.

Funder

National Institute of Health UO1

National Institute of Health PO1

National Institute of Health NRSA

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3