Optical deformation of single aerosol particles

Author:

Rafferty Aidan,Gorkowski Kyle,Zuend AndreasORCID,Preston Thomas C.ORCID

Abstract

Advancements in designing complex models for atmospheric aerosol science and aerosol–cloud interactions rely vitally on accurately measuring the physicochemical properties of microscopic particles. Optical tweezers are a laboratory-based platform that can provide access to such measurements as they are able to isolate individual particles from an ensemble. The surprising ability of a focused beam of light to trap and hold a single particle can be conceptually understood in the ray optics regime using momentum transfer and Newton’s second law. The same radiation pressure that results in stable trapping will also exert a deforming optical stress on the surface of the particle. For micron-sized aqueous droplets held in the air, the deformation will be on the order of a few nanometers or less, clearly not observable through optical microscopy. In this study, we utilize cavity-enhanced Raman scattering and a phenomenon known as thermal locking to measure small deformations in optically trapped droplets. With the aid of light-scattering calculations and a model that balances the hydrostatic pressure, surface tension, and optical pressure across the air–droplet interface, we can accurately determine surface tension from our measurements. Our approach is applied to 2 systems of atmospheric interest: aqueous organic and inorganic aerosol.

Funder

Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3