Author:
Banerjee Puja,Bagchi Biman
Abstract
Water, often termed as the “lubricant of life,” is expected to play an active role in navigating protein dissociation–association reactions. In order to unearth the molecular details, we first compute the free-energy surface (FES) of insulin dimer dissociation employing metadynamics simulation, and then carry out analyses of insulin dimerization and dissociation using atomistic molecular-dynamics simulation in explicit water. We select two sets of initial configurations from 1) the dissociated state and 2) the transition state, and follow time evolution using several long trajectories (∼1–2 μs). During the process we not only monitor configuration of protein monomers, but also the properties of water. Although the equilibrium structural properties of water between the two monomers approach bulklike characteristics at a separation distance of ∼5 nm, the dynamics differ considerably. The complex association process is observed to be accompanied by several structural and dynamical changes of the system, such as large-scale correlated water density fluctuations, coupled conformational fluctuation of protein monomers, a dewettinglike transition with the change of intermonomeric distance RMM from ∼4 to ∼2 nm, orientation of monomers and hydrophobic hydration in the monomers. A quasistable, solvent-shared, protein monomer pair (SSPMP) forms at around 2 nm during association process which is a local free-energy minimum having ∼50–60% of native contacts. Simulations starting with arrangements sampled from the transition state (TS) of the dimer dissociation reveal that the final outcome depends on relative orientation of the backbone in the “hotspot” region.
Funder
Department of Science and Technology, Ministry of Science and Technology
Council of Scientific and Industrial Research
Publisher
Proceedings of the National Academy of Sciences
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献