Abstract
Genome-wide phenotypic screens provide an unbiased way to identify genes involved in particular biological traits, and have been widely used in lower model organisms. However, cost and time have limited the utility of such screens to address biological and disease questions in mammals. Here we report a highly efficientpiggyBac(PB) transposon-based first-generation (F1) dominant screening system in mice that enables an individual investigator to conduct a genome-wide phenotypic screen within a year with fewer than 300 cages. ThePBscreening system uses visually trackable transposons to induce both gain- and loss-of-function mutations and generates genome-wide distributed new insertions in more than 55% of F1 progeny. Using this system, we successfully conducted a pilot F1 screen and identified 5 growth retardation mutations. One of these mutants, a Six1/4PB/+mutant, revealed a role in milk intake behavior. The mutant animals exhibit abnormalities in nipple recognition and milk ingestion, as well as developmental defects in cranial nerves V, IX, and X. ThisPBF1 screening system offers individual laboratories unprecedented opportunities to conduct affordable genome-wide phenotypic screens for deciphering the genetic basis of mammalian biology and disease pathogenesis.
Publisher
Proceedings of the National Academy of Sciences
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献