Microsecond-timescale simulations suggest 5-HT–mediated preactivation of the 5-HT3Aserotonin receptor

Author:

Guros Nicholas B.,Balijepalli Arvind,Klauda Jeffery B.ORCID

Abstract

Aided by efforts to improve their speed and efficiency, molecular dynamics (MD) simulations provide an increasingly powerful tool to study the structure–function relationship of pentameric ligand-gated ion channels (pLGICs). However, accurate reporting of the channel state and observation of allosteric regulation by agonist binding with MD remains difficult due to the timescales necessary to equilibrate pLGICs from their artificial and crystalized conformation to a more native, membrane-bound conformation in silico. Here, we perform multiple all-atom MD simulations of the homomeric 5-hydroxytryptamine 3A (5-HT3A) serotonin receptor for 15 to 20 μs to demonstrate that such timescales are critical to observe the equilibration of a pLGIC from its crystalized conformation to a membrane-bound conformation. These timescales, which are an order of magnitude longer than any previous simulation of 5-HT3A, allow us to observe the dynamic binding and unbinding of 5-hydroxytryptamine (5-HT) (i.e., serotonin) to the binding pocket located on the extracellular domain (ECD) and allosteric regulation of the transmembrane domain (TMD) from synergistic 5-HT binding. While these timescales are not long enough to observe complete activation of 5-HT3A, the allosteric regulation of ion gating elements by 5-HT binding is indicative of a preactive state, which provides insight into molecular mechanisms that regulate channel activation from a resting state. This mechanistic insight, enabled by microsecond-timescale MD simulations, will allow a careful examination of the regulation of pLGICs at a molecular level, expanding our understanding of their function and elucidating key structural motifs that can be targeted for therapeutic regulation.

Funder

NIST

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3