Nonequilibrium site distribution governs charge-transfer electroluminescence at disordered organic heterointerfaces

Author:

Melianas ArmantasORCID,Felekidis Nikolaos,Puttisong Yuttapoom,Meskers Stefan C. J.,Inganäs Olle,Chen Weimin M.,Kemerink Martijn

Abstract

The interface between electron-donating (D) and electron-accepting (A) materials in organic photovoltaic (OPV) devices is commonly probed by charge-transfer (CT) electroluminescence (EL) measurements to estimate the CT energy, which critically relates to device open-circuit voltage. It is generally assumed that during CT-EL injected charges recombine at close-to-equilibrium energies in their respective density of states (DOS). Here, we explicitly quantify that CT-EL instead originates from higher-energy DOS site distributions significantly above DOS equilibrium energies. To demonstrate this, we have developed a quantitative and experimentally calibrated model for CT-EL at organic D/A heterointerfaces, which simultaneously accounts for the charge transport physics in an energetically disordered DOS and the Franck–Condon broadening. The 0–0 CT-EL transition lineshape is numerically calculated using measured energetic disorder values as input to 3-dimensional kinetic Monte Carlo simulations. We account for vibrational CT-EL overtones by selectively measuring the dominant vibrational phonon-mode energy governing CT luminescence at the D/A interface using fluorescence line-narrowing spectroscopy. Our model numerically reproduces the measured CT-EL spectra and their bias dependence and reveals the higher-lying manifold of DOS sites responsible for CT-EL. Lowest-energy CT states are situated ∼180 to 570 meV below the 0–0 CT-EL transition, enabling photogenerated carrier thermalization to these low-lying DOS sites when the OPV device is operated as a solar cell rather than as a light-emitting diode. Nonequilibrium site distribution rationalizes the experimentally observed weak current-density dependence of CT-EL and poses fundamental questions on reciprocity relations relating light emission to photovoltaic action and regarding minimal attainable photovoltaic energy conversion losses in OPV devices.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3