Wind farm power optimization through wake steering

Author:

Howland Michael F.ORCID,Lele Sanjiva K.,Dabiri John O.

Abstract

Global power production increasingly relies on wind farms to supply low-carbon energy. The recent Intergovernmental Panel on Climate Change (IPCC) Special Report predicted that renewable energy production must leap from 20% of the global energy mix in 2018 to 67% by 2050 to keep global temperatures from rising 1.5°C above preindustrial levels. This increase requires reliable, low-cost energy production. However, wind turbines are often placed in close proximity within wind farms due to land and transmission line constraints, which results in wind farm efficiency degradation of up to 40% for wind directions aligned with columns of turbines. To increase wind farm power production, we developed a wake steering control scheme. This approach maximizes the power of a wind farm through yaw misalignment that deflects wakes away from downstream turbines. Optimization was performed with site-specific analytic gradient ascent relying on historical operational data. The protocol was tested in an operational wind farm in Alberta, Canada, resulting in statistically significant (P<0.05) power increases of 7–13% for wind speeds near the site average and wind directions which occur during less than 10% of nocturnal operation and 28–47% for low wind speeds in the same wind directions. Wake steering also decreased the variability in the power production of the wind farm by up to 72%. Although the resulting gains in annual energy production were insignificant at this farm, these statistically significant wake steering results demonstrate the potential to increase the efficiency and predictability of power production through the reduction of wake losses.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference59 articles.

1. Intergovernmental Panel on Climate Change. Summary for policymakers” in Global Warming of 1 . 5 ○   C . An IPCC Special Report on the Impacts of Global Warming of 1 . 5 ○   C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty, V. Masson-Delmotte et al., Eds. (World Meteorological Organization, Geneva, Switzerland, 2018).

2. UNFCCC , “Adoption of the Paris agreement” (Report No. FCCC/CP/2015/L.9/Rev.1, 2015).

3. Paris Agreement climate proposals need a boost to keep warming well below 2 °C

4. The trouble with negative emissions

5. EIA , “Annual Energy Outlook” (AEO2018, 2018).

Cited by 192 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3