Abstract
Zygotes at the 1-cell stage have been genetically modified by microinjecting the CRISPR/Cas9 components for the generation of targeted gene knockout in mammals. In the avian species, genetic modification of the zygote is difficult because its unique reproductive system limits the accessibility of the zygote at the 1-cell stage. To date, only a few CRISPR/Cas9-mediated gene knockouts have been reported using the chicken as a model among avian species, which requires 3 major processes: isolation and culture of primordial germ cells (PGCs), modification of the genome of PGCs in vitro, and injection of the PGCs into the extraembryonic blood vessel at the early embryonic stages when endogenous PGCs migrate through circulation to the genital ridge. In the present study, the adenoviral CRISPR/Cas9 vector was directly injected into the quail blastoderm in newly laid eggs. The resulting chimeras generated offspring with targeted mutations in the melanophilin (MLPH) gene, which is involved in melanosome transportation and feather pigmentation.MLPHhomozygous mutant quail exhibited gray plumage, whereasMLPHheterozygous mutants and wild-type quail exhibited dark brown plumage. In addition, the adenoviral vector was not integrated into the genome of knockout quail, and no mutations were detected in potential off-target regions. This method of generating genome-edited poultry is expected to accelerate avian research and has potential applications for developing superior genetic lines for poultry production in the industry.
Funder
USDA | National Institute of Food and Agriculture
Ohio Agricultural Research and Development Center, Ohio State University
Publisher
Proceedings of the National Academy of Sciences
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献