Abstract
The multicopper enzyme nitrous oxide reductase reduces the greenhouse gas N2O to uncritical N2as the final step of bacterial denitrification. Its two metal centers require an elaborate assembly machinery that so far has precluded heterologous production as a prerequisite for bioremediatory applications in agriculture and wastewater treatment. Here, we report on the production of active holoenzyme inEscherichia coliusing a two-plasmid system to produce the entire biosynthetic machinery as well as the structural gene for the enzyme. Using this recombinant system to probe the role of individual maturation factors, we find that the ABC transporter NosFY and the accessory NosD protein are essential for the formation of the [4Cu:2S] site CuZ, but not the electron transfer site CuA. Depending on source organism, the heterologous hostE. colican, in some cases, compensate for the lack of the Cu chaperone NosL, while in others this protein is strictly required, underlining the case for designing a recombinant system to be entirely self-contained.
Funder
EC | FP7 | FP7 Ideas: European Research Council
Deutsche Forschungsgemeinschaft
Publisher
Proceedings of the National Academy of Sciences
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献