Optimal compressed sensing strategies for an array of nonlinear olfactory receptor neurons with and without spontaneous activity

Author:

Qin Shanshan,Li Qianyi,Tang Chao,Tu Yuhai

Abstract

There are numerous different odorant molecules in nature but only a relatively small number of olfactory receptor neurons (ORNs) in brains. This “compressed sensing” challenge is compounded by the constraint that ORNs are nonlinear sensors with a finite dynamic range. Here, we investigate possible optimal olfactory coding strategies by maximizing mutual information between odor mixtures and ORNs’ responses with respect to the bipartite odor-receptor interaction network (ORIN) characterized by sensitivities between all odorant–ORN pairs. For ORNs without spontaneous (basal) activity, we find that the optimal ORIN is sparse—a finite fraction of sensitives are zero, and the nonzero sensitivities follow a broad distribution that depends on the odor statistics. We show analytically that sparsity in the optimal ORIN originates from a trade-off between the broad tuning of ORNs and possible interference. Furthermore, we show that the optimal ORIN enhances performances of downstream learning tasks (reconstruction and classification). For ORNs with a finite basal activity, we find that having inhibitory odor–receptor interactions increases the coding capacity and the fraction of inhibitory interactions increases with the ORN basal activity. We argue that basal activities in sensory receptors in different organisms are due to the trade-off between the increase in coding capacity and the cost of maintaining the spontaneous basal activity. Our theoretical findings are consistent with existing experiments and predictions are made to further test our theory. The optimal coding model provides a unifying framework to understand the peripheral olfactory systems across different organisms.

Funder

HHS | NIH | National Institute of General Medical Sciences

Chinese Ministry of Science and Technology

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3