Abstract
The exposed active sites of semiconductor catalysts are essential to the photocatalytic energy conversion efficiency. However, it is difficult to directly observe such active sites and understand the photogenerated electron/hole pairs’ dynamics on a single catalyst particle. Here, we applied a quasi-total internal reflection fluorescence microscopy and laser-scanning confocal microscopy to identify the photocatalytic active sites at a single-molecule level and visualized the photogenerated hole–electron pair dynamics on a single TiO2 particle, the most widely used photocatalyst. The experimental results and density functional theory calculations reveal that holes and electrons tend to reach and react at the same surface sites, i.e., crystal edge/corner, within a single anatase TiO2 particle owing to the highly exposed (001) and (101) facets. The observation provides solid proof for the existence of the surface junction “edge or corner” on single TiO2 particles. These findings also offer insights into the nature of the photocatalytic active sites and imply an activity-based strategy for rationally engineering catalysts for improved photocatalysis, which can be also applied for other catalytic materials.
Funder
Ministry of Education, Culture, Sports, Science and Technology
National Natural Science Foundation of China
Publisher
Proceedings of the National Academy of Sciences
Cited by
66 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献