Recurrence is required to capture the representational dynamics of the human visual system

Author:

Kietzmann Tim C.ORCID,Spoerer Courtney J.,Sörensen Lynn K. A.,Cichy Radoslaw M.,Hauk Olaf,Kriegeskorte Nikolaus

Abstract

The human visual system is an intricate network of brain regions that enables us to recognize the world around us. Despite its abundant lateral and feedback connections, object processing is commonly viewed and studied as a feedforward process. Here, we measure and model the rapid representational dynamics across multiple stages of the human ventral stream using time-resolved brain imaging and deep learning. We observe substantial representational transformations during the first 300 ms of processing within and across ventral-stream regions. Categorical divisions emerge in sequence, cascading forward and in reverse across regions, and Granger causality analysis suggests bidirectional information flow between regions. Finally, recurrent deep neural network models clearly outperform parameter-matched feedforward models in terms of their ability to capture the multiregion cortical dynamics. Targeted virtual cooling experiments on the recurrent deep network models further substantiate the importance of their lateral and top-down connections. These results establish that recurrent models are required to understand information processing in the human ventral stream.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference60 articles.

Cited by 289 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3