Abstract
Genome-wide association studies found that increased risk for atrial fibrillation (AF), the most common human heart arrhythmia, is associated with noncoding sequence variants located in proximity to PITX2. Cardiomyocyte-specific epigenomic and comparative genomics uncovered 2 AF-associated enhancers neighboring PITX2 with varying conservation in mice. Chromosome conformation capture experiments in mice revealed that the Pitx2c promoter directly contacted the AF-associated enhancer regions. CRISPR/Cas9-mediated deletion of a 20-kb topologically engaged enhancer led to reduced Pitx2c transcription and AF predisposition. Allele-specific chromatin immunoprecipitation sequencing on hybrid heterozygous enhancer knockout mice revealed that long-range interaction of an AF-associated region with the Pitx2c promoter was required for maintenance of the Pitx2c promoter chromatin state. Long-range looping was mediated by CCCTC-binding factor (CTCF), since genetic disruption of the intronic CTCF-binding site caused reduced Pitx2c expression, AF predisposition, and diminished active chromatin marks on Pitx2. AF risk variants located at 4q25 reside in genomic regions possessing long-range transcriptional regulatory functions directed at PITX2.
Publisher
Proceedings of the National Academy of Sciences
Cited by
49 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献