Genomic analysis of siderophore β-hydroxylases reveals divergent stereocontrol and expands the condensation domain family

Author:

Reitz Zachary L.,Hardy Clifford D.,Suk Jaewon,Bouvet Jean,Butler AlisonORCID

Abstract

Genome mining of biosynthetic pathways streamlines discovery of secondary metabolites but can leave ambiguities in the predicted structures, which must be rectified experimentally. Through coupling the reactivity predicted by biosynthetic gene clusters with verified structures, the origin of the β-hydroxyaspartic acid diastereomers in siderophores is reported herein. Two functional subtypes of nonheme Fe(II)/α-ketoglutarate–dependent aspartyl β-hydroxylases are identified in siderophore biosynthetic gene clusters, which differ in genomic organization—existing either as fused domains (IβHAsp) at the carboxyl terminus of a nonribosomal peptide synthetase (NRPS) or as stand-alone enzymes (TβHAsp)—and each directs opposite stereoselectivity of Asp β-hydroxylation. The predictive power of this subtype delineation is confirmed by the stereochemical characterization of β-OHAsp residues in pyoverdine GB-1, delftibactin, histicorrugatin, and cupriachelin. The l-threo (2S, 3S) β-OHAsp residues of alterobactin arise from hydroxylation by the β-hydroxylase domain integrated into NRPS AltH, while l-erythro (2S, 3R) β-OHAsp in delftibactin arises from the stand-alone β-hydroxylase DelD. Cupriachelin contains both l-threo and l-erythro β-OHAsp, consistent with the presence of both types of β-hydroxylases in the biosynthetic gene cluster. A third subtype of nonheme Fe(II)/α-ketoglutarate–dependent enzymes (IβHHis) hydroxylates histidyl residues with l-threo stereospecificity. A previously undescribed, noncanonical member of the NRPS condensation domain superfamily is identified, named the interface domain, which is proposed to position the β-hydroxylase and the NRPS-bound amino acid prior to hydroxylation. Through mapping characterized β-OHAsp diastereomers to the phylogenetic tree of siderophore β-hydroxylases, methods to predict β-OHAsp stereochemistry in silico are realized.

Funder

National Science Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3