The role of saltwater and waves in continental shelf formation with seaward migrating clinoform

Author:

Iwasaki ToshikiORCID,Parker GaryORCID

Abstract

Continental shelves have generally been interpreted as drowned coastal plains associated with the allogenic effect of sea-level variation. Here, without disputing this mechanism we describe an alternative autogenic mechanism for subaqueous shelf formation, driven by the presence of dissolved salt in seawater and surface waves. We use a numerical model describing flow hydrodynamics, sediment transport, and morphodynamics in order to do this. More specifically, we focus on two major aspects: 1) the role of saltwater in the subaqueous construction of continental shelves and 2) the transformation of these shelves into seaward-migrating clinoforms under the condition of repeated pulses of water and sediment input and steady wave effects, but no allogenic forcing such as sea-level change. In the case for which the receiving basin contains fresh water of the same density as the sediment-laden river water, the hyperpycnal river water plunges to form a turbidity current that can run out to deep water. In the case for which the receiving basin contains sea water but the river contains sediment-laden fresh water, the hypopycnal river water forms a surface plume that deposits sediment proximally. This proximate proto-shelf can then grow to wave base, after which wave-supported turbidity currents can extend it seaward. The feature we refer to is synonymous with near-shore mud belts.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference63 articles.

1. L. F. Pratson ., “Seascape evolution on clastic continental shelves and slopes” in Continental Margin Sedimentation: From Sediment Transport To Sequence Stratigraphy, C. A. Nittrouer ., Eds. (Blackwell Publishing Ltd., Oxford, 2007).

2. Sediment supply: The main driver of shelf-margin growth;Carvajal;Earth Sci. Rev.,2009

3. Shelf genesis revisited

4. Quantitative characterization of deltatic and subaqueous clinoforms;Patruno;Earth Sci. Rev.,2015

5. J. P. Kennett , Marine Geology (Prentice-Hall, Englewood Cliffs, NJ, 1982), p. 813.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3