Abstract
Interleukin-2 (IL-2) and IL-15 play pivotal roles in T cell activation, apoptosis, and survival, and are implicated in leukemias and autoimmune diseases. Their heterotrimeric receptors share their β- and γc-chains, but have distinct α-chains. Anti–IL-2Rα (daclizumab) therapy targeting cell surface-expressed receptor subunits to inhibit T cell proliferation has only brought limited success in adult T cell leukemia/lymphoma (ATL) and in multiple sclerosis. We asked whether IL-2R subunits could already preassemble and signal efficiently in the endoplasmic reticulum (ER) and the Golgi. A combination of daclizumab and anti–IL-2 efficiently blocked IL-2–induced proliferation of IL-2–dependent wild-type (WT) ATL cells but not cells transfected with IL-2, suggesting that in IL-2–producing cells signaling may already take place before receptors reach the cell surface. In the Golgi fraction isolated from IL-2–producing ATL cells, we detected by Western blot phosphorylated Jak1, Jak3, and a phosphotyrosine signal attributed to the γc-chain, which occurred at much lower levels in the Golgi of WT ATL cells. We expressed EGFP- and mCherry-tagged receptor chains in HeLa cells to study their assembly along the secretory pathway. Confocal microscopy, Förster resonance energy transfer, and imaging fluorescence cross-correlation spectroscopy analysis revealed partial colocalization and molecular association of IL-2 (and IL-15) receptor chains in the ER/Golgi, which became more complete in the plasma membrane, further confirming our hypothesis. Our results define a paradigm of intracellular autocrine signaling and may explain resistance to antagonistic antibody therapies targeting receptors at the cell surface.
Funder
National Research, Development and Innovation Office, Hungary
EU and the European Social Found
German Academic Exchange Service and the Tempus Public Foundation
HHS | NIH | National Cancer Institute
Publisher
Proceedings of the National Academy of Sciences
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献