Paternal knockout of Slc38a4/SNAT4 causes placental hypoplasia associated with intrauterine growth restriction in mice

Author:

Matoba ShogoORCID,Nakamuta Shoko,Miura Kento,Hirose Michiko,Shiura Hirosuke,Kohda Takashi,Nakamuta Nobuaki,Ogura Atsuo

Abstract

The placenta is critical in mammalian embryonic development because the embryo’s supply of nutrients, including amino acids, depends solely on mother-to-embryo transport through it. However, the molecular mechanisms underlying this amino acid supply are poorly understood. In this study, we focused on system A amino acid transporters Slc38a1/SNAT1, Slc38a2/SNAT2, and Slc38a4/SNAT4, which carry neutral, short-side-chain amino acids, to determine their involvement in placental or embryonic development. A triple-target CRISPR screen identified Slc38a4/SNAT4 as the critical amino acid transporter for placental development in mice. We established mouse lines from the CRISPR founders with large deletions in Slc38a4 and found that, consistent with the imprinted paternal expression of Slc38a4/SNAT4 in the placenta, paternal knockout (KO) but not maternal KO of Slc38a4/SNAT4 caused placental hypoplasia associated with reduced fetal weight. Immunostaining revealed that SNAT4 was widely expressed in differentiating cytotrophoblasts and maturing trophoblasts at the maternal–fetal interface. A blood metabolome analysis revealed that amino acid concentrations were globally reduced in Slc38a4/SNAT4 mutant embryos. These results indicated that SNAT4-mediated amino acid transport in mice plays a major role in placental and embryonic development. Given that expression of Slc38a4 in the placenta is conserved in other species, our Slc38a4/SNAT4 mutant mice could be a promising model for the analysis of placental defects leading to intrauterine growth restriction in mammals.

Funder

MEXT | Japan Society for the Promotion of Science

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3