Dynamic secretome of bone marrow-derived stromal cells reveals a cardioprotective biochemical cocktail

Author:

Kshitiz ORCID,Ellison David D.,Suhail Yasir,Afzal Junaid,Woo Laura,Kilic Onur,Spees Jeffrey,Levchenko Andre

Abstract

Transplanted stromal cells have demonstrated considerable promise as therapeutic agents in diverse disease settings. Paracrine signaling can be an important mediator of these therapeutic effects at the sites of acute or persistent injury and inflammation. As many stromal cell types, including bone marrow-derived stromal cells (BMSCs), display tissue-specific responses, there is a need to explore their secretory dynamics in the context of tissue and injury type. Paracrine signals are not static, and could encode contextual dynamics in the kinetic changes of the concentrations of the secreted ligands. However, precise measurement of dynamic and context-specific cellular secretory signatures, particularly in adherent cells, remains challenging. Here, by creating an experimental and computational analysis platform, we reconstructed dynamic secretory signatures of cells based on a very limited number of time points. By using this approach, we demonstrate that the secretory signatures of CD133-positive BMSCs are uniquely defined by distinct biological contexts, including signals from injured cardiac cells undergoing oxidative stress, characteristic of cardiac infarction. Furthermore, we show that the mixture of recombinant factors reproducing the dynamics of BMSC-generated secretion can mediate a highly effective rescue of cells injured by oxidative stress and an improved cardiac output. These results support the importance of the dynamic multifactorial paracrine signals in mediating remedial effects of stromal stem cells, and pave the way for stem cell-inspired cell-free treatments of cardiac and other injuries.

Funder

American Heart Association

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3