The concurrent decline of soil lead and children’s blood lead in New Orleans

Author:

Mielke Howard W.ORCID,Gonzales Christopher R.,Powell Eric T.,Laidlaw Mark A. S.,Berry Kenneth J.,Mielke Paul W.,Egendorf Sara Perl

Abstract

Lead (Pb) is extremely toxic and a major cause of chronic diseases worldwide. Pb is associated with health disparities, particularly within low-income populations. In biological systems, Pb mimics calcium and, among other effects, interrupts cell signaling. Furthermore, Pb exposure results in epigenetic changes that affect multigenerational gene expression. Exposure to Pb has decreased through primary prevention, including removal of Pb solder from canned food, regulating lead-based paint, and especially eliminating Pb additives in gasoline. While researchers observe a continuous decline in children’s blood lead (BPb), reservoirs of exposure persist in topsoil, which stores the legacy dust from leaded gasoline and other sources. Our surveys of metropolitan New Orleans reveal that median topsoil Pb in communities (n = 274) decreased 44% from 99 mg/kg to 54 mg/kg (P value of 2.09 × 10−08), with a median depletion rate of ∼2.4 mg⋅kg⋅y−1 over 15 y. From 2000 through 2005 to 2011 through 2016, children’s BPb declined from 3.6 μg/dL to 1.2 μg/dL or 64% (P value of 2.02 × 10−85), a decrease of ∼0.2 μg⋅dL⋅y−1 during a median of 12 y. Here, we explore the decline of children’s BPb by examining a metabolism of cities framework of inputs, transformations, storages, and outputs. Our findings indicate that decreasing Pb in topsoil is an important factor in the continuous decline of children’s BPb. Similar reductions are expected in other major US cities. The most contaminated urban communities, usually inhabited by vulnerable populations, require further reductions of topsoil Pb to fulfill primary prevention for the nation’s children.

Funder

HHS | CDC | Agency for Toxic Substances and Disease Registry

U.S. Department of Housing and Urban Development

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference98 articles.

1. C. C. Patterson , “An alternative perspective-lead pollution in the human environment: Origin, extent, and significance” in Lead in the Human Environment, Committee on Lead in the Human Environment, Ed. (National Academy of Sciences, Washington, DC, 1980), pp. 265–349.

2. Human exposure to lead and new evidence of adverse health effects: Implications for analytical measurements;Parsons;Int. Cent. Diffr. Data,2010

3. Deficits in Psychologic and Classroom Performance of Children with Elevated Dentine Lead Levels

4. New information on lead in dirt and dust as related to the childhood lead problem;Haar;Environ. Health Perspect.,1974

5. Soil is an important pathway of human lead exposure.

Cited by 85 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3