Oxidative stress drives the selection of quorum sensing mutants in the Staphylococcus aureus population

Author:

George Shilpa Elizabeth,Hrubesch Jennifer,Breuing Inga,Vetter Naisa,Korn Natalya,Hennemann Katja,Bleul Lisa,Willmann MatthiasORCID,Ebner Patrick,Götz Friedrich,Wolz ChristianeORCID

Abstract

Quorum sensing (QS) is the central mechanism by which social interactions within the bacterial community control bacterial behavior. QS-negative cells benefit by exploiting public goods produced by the QS-proficient population. Mechanisms to keep the balance between producers and nonproducers within the population are expected but have not been elucidated for peptide-based QS systems in gram-positive pathogens. The Agr system of Staphylococcus aureus comprises the secretion and sensing of an autoinducing peptide to activate its own expression via the response regulator AgrA as well as the expression of a regulatory RNAIII and psmα/psmß coding for phenol-soluble modulins (PSMs). Agr mutants can be monitored on blood agar due to their nonhemolytic phenotype. In vitro evolution and competition experiments show that they readily accumulate in a process that is accelerated by ciprofloxacin, while the wild type (WT) is retained in the population at low numbers. However, agr mutants possess a fitness advantage only under aerobic conditions. Under hypoxia, Agr activity is increased but without the expected fitness cost. The Agr-imposed oxygen-dependent fitness cost is not due to a metabolic burden but due to the reactive oxygen species (ROS)-inducing capacity of the PSMs and RNAIII-regulated factors. Thus, selection of mutants is dictated by the QS system itself. Under aerobic conditions, emergence of agr-negative mutants may provide the population with a fitness advantage while hypoxia favors QS maintenance and even affords increased toxin production. The oxygen-driven tuning of the Agr system might be of importance to provide the pathogen with capabilities crucial for disease progression.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3